
ARTICLE IN PRESS
0925-2312/$ - se

doi:10.1016/j.ne

�Correspond
E-mail addr
Neurocomputing 69 (2006) 2078–2089

www.elsevier.com/locate/neucom
A novel genetic reinforcement learning for nonlinear fuzzy
control problems

Cheng-Jian Lin�, Yong-Ji Xu

Department of Computer Science and Information Engineering, Chaoyang University of Technology, No. 168, Jifong E. Rd., Wufong Township,

Taichung County 41349, Taiwan, ROC

Received 21 September 2004; received in revised form 11 May 2005; accepted 23 September 2005

Available online 7 February 2006

Communicated by M.-J. Er
Abstract

Unlike a supervise learning, a reinforcement learning problem has only very simple ‘‘evaluative’’ or ‘‘critic’’ information available for

learning, rather than ‘‘instructive’’ information. A novel genetic reinforcement learning, called reinforcement sequential-search-based

genetic algorithm (R-SSGA), is proposed for solving the nonlinear fuzzy control problems in this paper. Unlike the traditional

reinforcement genetic algorithm, the proposed R-SSGA method adopts the sequential-search-based genetic algorithms (SSGA) to tune

the fuzzy controller. Therefore, the better chromosomes will be initially generated while the better mutation points will be determined for

performing efficient mutation. The adjustable parameters of fuzzy controller are coded as real number components. We formulate a

number of time steps before failure occurs as a fitness function. Simulation results have shown that the proposed R-SSGA method

converges quickly and minimizes the population size.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Reinforcement learning; Genetic algorithm; Fuzzy system; Nonlinear control; Efficient mutation; Sequential-search
1. Introduction

In recent years, the concept of the fuzzy logic or artificial
neural networks for control problems has grown into a
popular research area [17,24,27]. The reason is that
classical control theory usually requires a mathematical
model for designing controllers. The inaccuracy of
mathematical modeling of plants usually degrades the
performance of the controllers, especially for nonlinear
and complex control problems [2,11]. Fuzzy logic has the
ability to express the ambiguity of human thinking and
translate expert knowledge into computable numerical
data.

A fuzzy system consists of a set of fuzzy IF–THEN rules
that describe the input–output mapping relationship of the
networks. Obviously, it is difficult for human experts to
examine all the input–output data from a complex system
e front matter r 2006 Elsevier B.V. All rights reserved.

ucom.2005.09.015

ing author.

ess: cjlin@mail.cyut.edu.tw (C.-J. Lin).
to find proper rules for a fuzzy system. To cope with this
difficulty, several approaches that are used to generate the
fuzzy IF–THEN rules from numerical data have been
proposed [1,3,15,21]. These methods were developed for
supervised learning; i.e., the correct ‘‘target’’ output values
are given for each input pattern to guide the learning of the
network. However, most of the supervised learning
algorithms for neural fuzzy networks require precise
training data to tune the networks for various applications.
For some real world applications, precise training data are
usually difficult and expensive, if not impossible, to obtain.
For this reason, there has been a growing interest in
reinforcement learning algorithms for use in fuzzy [22,30]
or neural controller [10,29] design.
In the design of a fuzzy controller, adjusting the required

parameters is important. To do this, back-propagation
(BP) training was widely used in [10,23,29]. It is a powerful
training technique that can be applied to networks with a
forward structure. Since the steepest descent technique is
used in BP training to minimize the error function, the

www.elsevier.com/locate/neucom

ARTICLE IN PRESS

Rule1 Rule2 … Rulej … RuleR

jm1 j1σ jm2 j2σ ….
njm njσ 0w 1w …. nw

Fig. 1. Coding a fuzzy controller into a chromosome in the SSGA

method.

C.-J. Lin, Y.-J. Xu / Neurocomputing 69 (2006) 2078–2089 2079
algorithms may reach the local minima very fast and never
find the global solution.

The development of genetic algorithms (GAs) has
provided another approach for adjusting parameters in
the design of controllers. GA is a parallel and global
technique [16,22]. Because it simultaneously evaluates
many points in a search space, it is more likely to converge
toward the global solution. Some researchers have devel-
oped methods to design and implement fuzzy controllers
by using GAs. Karr [17] used a GA to generate member-
ship functions for a fuzzy system. In Karr’s work, a user
needs to declare an exhaustive rule set and then use a GA
to design only the membership functions. In [12], a fuzzy
controller design method that used a GA to find the
membership functions and the rule sets simultaneously was
proposed. Lin [19] proposed a hybrid learning method
which combines the GA and the least-squares estimate
(LSE) method to construct a neural fuzzy controller. In
[12,19], the input space was partitioned into a grid. The
number of fuzzy rules (i.e., the length of each chromosome
in the GA) increased exponentially as the dimension of the
input space increased. To overcome this problem, Juang
[14] adopted a flexible partition approach in the precondi-
tion part. The method has the admirable property of small
network size and high learning accuracy.

Recently, some researchers [9,16,18,22] applied GA
methods to implement reinforcement learning in the design
of fuzzy controllers. Lin and Jou [22] proposed GA-based
fuzzy reinforcement learning to control magnetic bearing
systems. In [16], Juang and his colleagues proposed genetic
reinforcement learning in designing fuzzy controllers. The
GA adopted in [16] was based upon traditional symbiotic
evolution which, when applied to fuzzy controller design,
complements the local mapping property of a fuzzy rule. In
[9], Er and Deng proposed dynamic Q-Learning for on-line
tuning the fuzzy inference systems. Kaya and Alhajj [18]
proposed a novel multiagent reinforcement learning
approach based on fuzzy OLAP association rules mining.
However, these approaches encountered one or more of the
following major problems: (1) the initial values of the
populations were generated randomly; (2) the mutational
value was generated by the constant range while the
mutation point is also generated randomly; (3) the
population sizes always depend on the problem which is
to be solved.

In this paper, we propose a reinforcement sequential-
search-based genetic algorithm (R-SSGA) method to solve
above-mentioned problems. Unlike the traditional reinfor-
cement learning, in this paper, we formulate a number of
time steps before failure occurs as the fitness function. The
new sequential-search-based genetic algorithm (SSGA) is
also proposed to perform parameter learning. Moreover,
the SSGA method is different from traditional GA, which
the better chromosomes will be initially generated while the
better mutation points will be determined for performing
efficient mutation. Compared with traditional GA, the
SSGA method generates initialize population efficiently
and decides efficient mutation points to perform mutation.
The advantages of the proposed R-SSGA method are
summarized as follows: (1) The R-SSGA method can
reduce the population sizes to a minimum size (4); (2) The
chromosome which has the best performance will be
chosen to perform the mutation operator in each genera-
tion; (3) The R-SSGA method converges more quickly
than existing traditional genetic methods.
This paper is organized as follows. Section 2 introduces

the SSGA. A R-SSGA is presented in Section 3. In
Section 4, the proposed R-SSGA method is evaluated using
two different control problems, and its performances are
benchmarked against other structures. Finally, conclusions
on the proposed algorithm are summarized in the last
section.
2. The sequential-search-based genetic algorithm

A new genetic learning algorithm, called SSGA, is
proposed to adjust the parameters for the desired outputs.
The proposed SSGA method is different from a traditional
GA [16,22]. The SSGA method generates initial population
efficiently and decides efficient mutation points to perform
mutation. Like traditional GA [16,22], the proposed SSGA
method consists of two major operators: reproduction,
crossover. Before the details of these two operators are
explained, coding, initialization and efficient mutation are
discussed as follows:
(a) Coding step: The first step in the SSGA method is to

code a fuzzy controller into a chromosome. In this paper,
we adopt a Takagi–Sugeno–Kang (TSK) type fuzzy
controller [26] to be the structure of the proposed SSGA
method. A TSK-type fuzzy controller employs different
implication and aggregation methods than the standard
Mamdani controller [24]. Instead of using fuzzy sets the
conclusion part of a rule, is a linear combination of the
crisp inputs.

IF x1 is A1j ðm1j ;s1jÞ and x2 is A2jðm2j ;s2jÞ . . . and xn is

Anjðmnj ;snjÞ

THEN y0 ¼ w0 þ w1x1 þ � � � þ wixi, ð1Þ

where mij and sij represent a Gaussian membership
function with mean and deviation with ith dimension and
jth rule node. A fuzzy rule in Fig. 1 is represented the form
in Eq. (1).

ARTICLE IN PRESS

Procedure Sequential-Search-Based Genetic Algorithm

Begin
Let p=0,i=0;

Repeat
k=k+1;
Repeat

 j=j+1;
 Repeat

p=p+1;
 Perform Chrk,j_new=inttialize(Chrk,j _old[p]);by(5)to(8);

Evaluate fitness(Chrk,j _new) and fitness(Chrk,j _old) by(11);
 If fitness(Chrk,j _new) >fitness(Chrk,j _old) Then

Chrk,j _old = Chrk,j _new;; else Chrk,j _new = Chrk,j _old;
Until p=2*n+(1+n);

Until j=R;

 Until k=Nf;

End

Fig. 2. The pseudo-code for the SSGA method.

C.-J. Lin, Y.-J. Xu / Neurocomputing 69 (2006) 2078–20892080
(b) Initialization step: Before the SSGA method is
designed, individuals forming an initial population should
be generated. Unlike traditional GA, an initial population
is generated randomly within a fixed range. In the SSGA
method, the initial population is generated efficiently to
ensure that chromosomes with good genes can be
generated. The detailed steps of the initialization method
are described as follows:

Step 0: The first chromosome that represents a TSK-type
fuzzy controller will be generated initially. The following
formulations show how to generate the chromosomes:

Deviation: Chrj½p� ¼ random½smin; smax�,

where p ¼ 2; 4; 6; . . . ; 2n, ð2Þ

Mean: Chrj½p� ¼ random½mmin;mmax�,

where p ¼ 1; 3; 5; . . . ; 2n� 1, ð3Þ

Weight: Chrj½p� ¼ random½wmin;wmax�,

where p ¼ 2nþ 1; . . . ; 2nþ ð1þ nÞ, ð4Þ

where Chrj means chromosome in ith rule and p represent
the pth gene in a Chrj; ½smin;smax�, ½mmin;mmax�, and
½wmin;wmax� represent the predefined ranges of deviation,
mean, and weight. The ranges are determined by practical
experimentation or trial-and-error tests.

Step 1: To generate the other chromosomes, we use the
SSGA method to generate the new chromosomes. The
search algorithm of the SSGA method is similar to the
local search procedure in [13]. In the SSGA method, every
gene in the previous chromosomes is selected using a
sequential search and the gene’s value is updated to
evaluate the performance based on the fitness value. The
details of the SSGA method are as follows:

(a) Sequentially search for a gene in the previous
chromosome.

(b) Update the chosen gene in (a) according to the
following formula:

Chrj ½p� ¼

Chrj½p� þ Dðfitness_value;

smax � Chrj½p�Þ; if a40:5;

Chrj½p� � Dðfitness_value;

Chrj ½p� � sminÞ; if ao0:5;

8>>>>><
>>>>>:

where p ¼ 2; 4; 6; . . . ; 2n, ð5Þ

Chrj ½p� ¼

Chrj½p� þ Dðfitness_value;

mmax � Chrj ½p�Þ; if a40:5;

Chrj½p� � Dðfitness_value;

Chrj ½p� �mminÞ; if ao0:5;

8>>>>><
>>>>>:

where p ¼ 1; 3; 5; . . . ; 2n� 1, ð6Þ
Chrj½p� ¼

Chrj ½p� þ Dðfitness_value;

wmax � Chrj½p�Þ; if a40:5;

Chrj ½p� � Dðfitness_value;

Chrj½p� � wminÞ; if ao0:5;

8>>>>><
>>>>>:

where p ¼ 2nþ 1; . . . ; 2nþ ð1þ nÞ, ð7Þ

where Dðfitness_value; vÞ ¼ vlð1=fitness_valueÞl, (8)

where a; l 2 ½0; 1� are the random values; fitness_value is the
fitness computed using Eq. (11); p represents the pth gene
in a chromosome; j represents the jth rule, respectively. The
function Dðfitness_value; vÞ returns a value, such that
Dðfitness_value; vÞ comes close to 0 as fitness_value in-
creases. This property causes the mutation operator to
search the space uniformly during the initial stage (when
fitness_value is small) and locally during the later stages,
thus increasing the probability of generating children closer
to its successor than a random choice and reducing the
number of generations.
(c) If the new gene that is generated from (b) can

improve the fitness value, then replace the old gene with the
new gene in the chromosome. If not, recover the old gene in
the chromosome. After this, go to (a) until every gene is
selected. The pseudo-code for the SSGA method is listed in
Fig. 2. The Chrk;j represents the kth chromosome and jth
rule in a fuzzy controller. And Nf denote the size of the
population, fitnessðChrk;j_newÞ is a fitness function by Eq.
(11) using the kth new chromosome.

Step 2: If no genes are selected to improve the fitness
value in Step 1, than the new chromosome will be
generated according to Step 0. After the new chromosome
is generated, the initialization method returns to Step 1
until the total number of chromosomes is generated.
In this paper, the firing strength of a fuzzy rule

is calculated by performing the ‘‘AND’’ operation on
the truth values of each variable to its corresponding

ARTICLE IN PRESS

Mutation Points

m1j ...w0mij...m2j j2σj1σ ijσ wj m1j ...w0mij...j2σj1σ

new
jwnew

ijσnew
jm2

new
jm2

new
ijσ new

jw

Fig. 3. Efficient mutation operation using 3 mutation points with jth rule.

Fuzzy Controller Builder

Accumulator

Plant

EGA Learning Algorithm

Fuzzy Controller
(TFC-ERLA controller)

Reinforcement
 Signal

Chromosomes

fState

x

Fig. 4. The proposed R-SSGA method.

C.-J. Lin, Y.-J. Xu / Neurocomputing 69 (2006) 2078–2089 2081
fuzzy sets,

uj ¼
Yn

i¼1

exp �
½u
ð1Þ
i �mij �

2

s2ij

 !
, (9)

where mij and sij are, respectively, the center and the width
of the Gaussian membership function of the jth term of the
ith input variable xi. The output of a fuzzy system is
computed by

uout ¼

P
juj

Pn
i¼0wijxiP
juj

, (10)

where the weight wj is the output action strength associated
with the jth rule and uout is the output of the network.

(c) Efficient mutation step: Although reproduction and
crossover will produce many new strings, they do not
introduce any new information to the population at the site
of an individual. Mutation is an operator that randomly
alters the allele of a gene. In this paper, we propose using
efficient mutation, which is unlike the traditional mutation,
to mutate the chromosomes. In the SSGA method, we
perform efficient mutation using the best fitness value
chromosome of every generation. And we use the SSGA
method to decide on the mutation points. When the
mutation points are selected, we use Eqs. (5)–(7) to update
the genes. The efficient mutation of an individual is shown
in Fig. 3.

(d) Reproduction step: Reproduction is a process in
which individual strings are copied according to their
fitness value. In this study, we use the roulette-wheel
selection method [8]—a simulated roulette is spun—for this
reproduction process. The best performing individuals in
the top half of the population [16] advances to the next
generation. The other half is generated to perform cross-
over and mutation operations on individuals in the top half
of the parent generation.

(e) Crossover step: Reproduction directs the search
toward the best existing individuals but does not create
any new individuals. In nature, an offspring has two
parents and inherits genes from both. The main operator
working on the parents is the crossover operator, the
operation of which occurred for a selected pair with a
crossover rate that was set to 0.5 in this study. The first step
is to select the individuals from the population for the
crossover. Tournament selection [8] is used to select the
top-half of the best performing individuals [16]. The
individuals are crossed and separated using a two-point
crossover that is the new individuals are created by
exchanging the site’s values between the selected sites of
parents’ individual. After this operation, the individuals
with poor performances are replaced by the newly
produced offspring.
The aforementioned steps are done repeatedly and

stopped when the predetermined condition is achieved.

3. Reinforcement sequential-search-based genetic algorithm

(R-SSGA)

Unlike the supervised learning problem, in which the
correct ‘‘target’’ output values are given for each input
pattern to perform fuzzy controller learning, the reinforce-
ment learning problem has only very simple ‘‘evaluative’’
or ‘‘critical’’ information, rather than ‘‘instructive’’ infor-
mation, available for learning. In the extreme case, there is
only a single bit of information to indicate whether the
output is right or wrong. Fig. 4 shows how the R-SSGA
method and its training environment interact in a
reinforcement learning problem. The environment supplies
a time-varying input vector to the R-SSGA method,
receives its time-varying output/action vectors and then
provides a reinforcement signal. In this paper, the
reinforcement signal indicates whether a success or a
failure occurs.
As show in Fig. 4, the R-SSGA method consists of a

TSK-type fuzzy controller which acts as the control

ARTICLE IN PRESS

Input Training Data

Forward Signal Propagation

(Fuzzy Controller)

Determine the Best Action

(Fuzzy Controller)

SSGA Learning Algorithm

R-SSGA method

Fig. 5. Flowchart of the R-SSGA method.

Table 1

The initial parameters before training

Parameters Value

Population size 4

Crossover rate 0.5

Coding type Real number

½smin; smax� [0,1]

½mmin;mmax� [0,1]

½wmin;wmax� ½�20; 20�

Fig. 6. The cart–pole balancing system.

C.-J. Lin, Y.-J. Xu / Neurocomputing 69 (2006) 2078–20892082
network to determine a proper action according to the
current input vector (environment state). The structure of
the R-SSGA method is different from Barto and his
colleagues’ actor-critic architecture [4,5]. Two neuron-like
adaptive elements are integrated in this system [4,5]. They
are the associative search element (ASE) used as a
controller, and the adaptive critic element (ACE) used as
a predictor. Temporal difference techniques and single-
parameter stochastic exploration are used in [4]. The input
to the R-SSGA method is the state of the plant, and the
output is a control action of the state, denoted by f. The
only available feedback is a reinforcement signal that
notifies the R-SSGA method only when a failure occurs.
An accumulator plays a role which is a relative perfor-
mance measure shown in Fig. 4. It accumulates the number
of time steps before a failure occurs [20]. In this paper, the
feedback takes the form of an accumulator that determines
how long the experiment is still a ‘‘success’’; this is used as a
relative measure of the fitness of the proposed R-SSGA
method. That is, the accumulator will indicate the ‘‘fitness’’
of the current R-SSGA method. The key to this learning
algorithm is formulating a number of time steps before
failure occurs and using this formulation as the fitness
function of the R-SSGA method. The advantage of the
proposed method need not use the critical network as
either a multi-step or single-step predictor.

Fig. 5 shows the flowchart of the R-SSGA method. The
R-SSGA method runs in a feedforward fashion to control
the environment (plant) until a failure occurs. Our relative
measure of fitness function takes the form of an
accumulator that determines how long the experiment is
a ‘‘success’’. In this way, according to a defined fitness
function, a fitness value is assigned to each string in the
population where high fitness values means good fit. In
this paper, we use a number of time steps before failure
occurs to define the fitness function. The fitness function is
defined by

fitness_valueðiÞ ¼ TIME�STEPðiÞ, (11)

where TIME-STEPðiÞ represents how long the experiment
is still a ‘‘success’’ about the ith population. Eq. (11)
reflects the fact that long-time steps before failure occurs
(to keep the desired control goal longer) mean higher
fitness of the R-SSGA method.

4. Illustrative examples

To verify the performance of the proposed R-SSGA
method, two control examples—the cart–pole balancing
system and a water bath temperature control system—are
presented in this section. For the two computer simula-
tions, the initial parameters are given in Table 1 before
training.

4.1. Example 1. Cart–pole balancing system

In this example, we shall apply the R-SSGA method to
the classic control problem of the cart–pole balancing. This
problem is often used as an example of inherently unstable
and dynamic systems to demonstrate both modern and
classic control techniques [6,7] or reinforcement learning
schemes [16,23], and is now used as a control benchmark.
As shown in Fig. 6, the cart–pole balancing problem is the
problem of learning how to balance an upright pole. The
bottom of the pole is hinged to the left or right of a cart
that travels along a finite-length track. Both the cart and
the pole can move only in the vertical plane; that is, each
has only one degree of freedom.
There are four state variables in the system: y, the angle

of the pole in an upright position (in degrees); _y the angular
velocity of the pole (in degrees/seconds); x, the horizontal
position of the cart’s center (in meters); and _x, the velocity

ARTICLE IN PRESS

10

9

8
7

6
5
4

3

2

1
0

0 5 10 15 20 25 30

T
im

e
S

te
p

un
til

 F
ai

lu
re

10
9
8
7
6
5
4
3
2
1
0

T
im

e
S

te
p

un
til

 F
ai

lu
re

10
9
8
7
6
5
4
3
2
1
0

T
im

e
S

te
p

un
til

 F
ai

lu
re

× 104

× 104

× 104

Generations

Generations

Generations

0 50 100 150 200 250

0 50 100 150 200 250 300 350 400

(a)

(b)

(c)

Fig. 7. The performance of (a) the R-SSGA method, (b) the SEFC

method [16], and (c) the TGFC method [22] on the cart–pole balancing

system.

C.-J. Lin, Y.-J. Xu / Neurocomputing 69 (2006) 2078–2089 2083
of the cart (in m/s). The only control action is f, which is
the amount of force (in N) applied to the cart to move it
left or right. The system fails when the pole falls past a
certain angle (�12� is used here) or when the cart runs into
the boundary of the track (the distance is 2.4m from the
center to each boundary of the track). The goal of this
control problem is to determine a sequence of forces that,
when applied to the cart, balance the pole so that it is
upright. The motion equations that we used were:

yðtþ 1Þ ¼ yðtÞ þ D_yðtÞ, (12)

_yðtþ 1Þ ¼ _yðtÞ þ D
ðmþmpÞg sin yðtÞ

ð4=3ÞðmþmpÞl �mpl cos2yðtÞ

�
cos yðtÞ½f ðtÞ þmpl _yðtÞ2 sin yðtÞ � mc sgnð _xðtÞÞ�

ð4=3ÞðmþmpÞl �mpl cos2yðtÞ

�

mpðmþmpÞ
_yðtÞ

mpl

ð4=3ÞðmþmpÞl �mpl cos2yðtÞ
, ð13Þ

xðtþ 1Þ ¼ xðtÞ þ D _xðtÞ, (14)

xðtþ 1Þ ¼ _xðtÞ þ D
f ðtÞ þmpl _yðtÞ2 sin yðtÞ � €yðtÞ cos yðtÞ

h i
ðmþmpÞ

�
mc sgnð _xðtÞÞ
ðmþmpÞ

, ð15Þ

where

l ¼ 0:5m; the length of the pole;

m ¼ 1:1 kg; combined mass of the pole and the cart;

mp ¼ 0:1 kg; mass of the pole;

g ¼ 9:8m=s; acceleration due to the gravity;

mc ¼ 0:0005; coefficient of friction of the cart on the

track;

mp ¼ 0:000002; coefficient of friction of the pole on

the cart;

D ¼ 0:02ðsÞ; sampling interval. ð16Þ

The constraints on the variables were �12�pyp12�,
�2:4mpxp2:4m, and �10Npfp10N. A control strat-
egy was deemed successful if it balanced a pole for 100 000
time steps.

The four input variables ðy; _y;x; _xÞ and the output f t are
normalized between 0 and 1 over the following ranges,
y 2 ½�12; 12�, _y 2 ½�60; 60�, x 2 ½�2:4; 2:4�, _x 2 ½�3; 3�,
f t 2 ½�10; 10�. The fitness function in this example is
defined in Eq. (11) to train the R-SSGA method where
Eq. (11) is used to calculate how long it takes the cart–pole
balancing system to fail and receives a penalty signal of �1
when the pole falls past a certain angle ðjyj412 �CÞ and
when the cart runs into the boundaries of the tracks falls
ðjxj42:4mÞ. In this experiment, the initial values were set
to (0, 0, 0, 0). And we set four rules constitute a TSK-Type
fuzzy controller.
A total of five runs were performs. Each run started at same
initial state. The simulation result in Fig. 7(a) shows that the
R-SSGA method learned on average to balance the pole at
the 16th generation. In this figure, each run indicates that the
largest fitness value in the current generation was selected
before the cart–pole balancing system failed. When the
proposed R-SSGA learning method is stopped, we choose
the best string in the population in the final generation and
tested it on the cart–pole balancing system. The final fuzzy rules
generated by the R-SSGA method are described as follows:

Rule 1: IF x1 is A11ð0:38; 0:35Þ and x2 is A21ð5:67; 0:32Þ
and x3 is A31ð0:19; 1:91Þ and x4 is A41ð0:40; 0:825Þ
THEN y0 ¼ �2:94þ 0:42x1 � 0:20x2 � 0:70x3 þ 0:40x4.
Rule 2: IF x1 is A12ð0:52; 1:70Þ and x2 is A22ð7:43; 0:39Þ

and x3 is A32ð0:37; 14:9Þ and x4 is A42ð1:28; 0:44Þ
THEN y0 ¼ 12:21þ 12:16x1 � 0:25x2 þ 0:32x3 þ 4:66x4.
Rule 3: IF x1 is A13ð0:52; 6:66Þ and x2 is A23ð12:1; 0:39Þ

and x3 is A33ð0:37; 9:64Þ and x4 is A43ð1:28; 0:44Þ
THEN y0 ¼ 11:93þ 9:63x1 � 0:25x2 þ 0:32x3 þ 9:64x4.
Rule 4: IF x1 is A14ð0:52; 17Þ and x2 is A24ð9:29; 0:39Þ and

x3 is A34ð0:37; 3:98Þ and x4 is A44ð1:28; 0:44Þ
THEN y0 ¼ 11:93� 3:98x1 � 0:25x2 þ 0:32x3 þ 10:29x4.

ARTICLE IN PRESS

0.01
0.008
0.006
0.004
0.002

-0.002
-0.004
-0.006
-0.008

-0.01

0

D
eg

re
e

D
eg

re
e

D
eg

re
e

0.1
0.08

0.06
0.04

0.02

-0.02

-0.04

-0.06

-0.08

-0.1

0

0.2

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

-0.2

0 20 40 60 80 100 120 140 160 180 200
Time (sec)

0 20 40 60 80 100 120 140 160 180 200
Time (sec)

0 20 40 60 80 100 120 140 160 180 200
Time (sec)

(a)

(b)

(c)

Fig. 8. Angular deviation of the pole by a trained (a) the R-SSGA

method, (b) the SEFC method [16], and (c) the TGFC method [22].

Table 2

Performance comparison of the R-SSGA, the SEFC, and the TGFC

methods

Method Mean (s) Best (s) Worst (s)

R-SSGA 20 3 60

SEFC [16] 36 4 236

TGFC [22] 165 8 412

10
8
6
4
2
0

-2
-4
-6
-8

-10

10
8
6
4
2
0

-2
-4
-6
-8

-10

10
8
6
4
2
0
-2
-4
-6
-8

-10

D
eg

re
e

D
eg

re
e

D
eg

re
e

0 20 40 60 80 100 120 140 160 180 200
Time (Sec)

0 20 40 60 80 100 120 140 160 180 200
Time (Sec)

0 20 40 60 80 100 120 140 160 180 200
Time (Sec)

(a)

(b)

(c)

Fig. 9. Angular deviation of the pole by a trained (a) the R-SSGA

method, (b) the SEFC method [16], and (c) the TGFC method [22] at the

initial state: rð0Þ ¼ 0:6, _rð0Þ ¼ 0:3, yð0Þ ¼ 3, _yð0Þ ¼ 1.

C.-J. Lin, Y.-J. Xu / Neurocomputing 69 (2006) 2078–20892084
Fig. 8(a) show the angular deviation of the pole when the
cart–pole balancing system was controlled by the well-
trained R-SSGA method starting at the initial state:
rð0Þ ¼ 0; _rð0Þ ¼ 0; yð0Þ ¼ 0; _yð0Þ ¼ 0. The average angular
deviation was 0:006�.

In this paper, we compare the performance of our system
with the symbiotic evolution fuzzy controller (SEFC) [16]
and the traditional genetic fuzzy controller (TGFC) [22]. In
the SEFC and TGFC, the population sizes were also set to
50, and the crossover and mutation probabilities were set to
0.5 and 0.3, respectively. Figs. 7(b) and (c) show that the
SEFC method and the TGFC method learned on average to
balance the pole at the 80th and 149th generation. In this
example, we compare the CPU times of the R-SSGA
method with the SEFC and the TGFC methods. Table 2
shows the CPU times of the three methods. As shown in
Table 2, our method obtains shorter CPU times than the
SEFC and the TGFC methods. Figs. 8(b) and (c) show the
angular deviation of the pole when the cart–pole balancing
system was controlled by Juang et al. [16] and Lin and Jo
[22] models. The average angular deviation of Juang et al.
[16] and Lin and Jo [22] models were 0:06� and 0:1�. We also
try to control the cart–pole balancing system at a dif-
ferent initial state: rð0Þ ¼ 0:6; _rð0Þ ¼ 0:3; yð0Þ ¼ 3; _yð0Þ ¼ 1.
Fig. 9(a)–(c) shows the angular deviation of the pole when
the cart–pole balancing system was controlled by the R-
SSGA, the SEFC [16], and the TGFC [22] models at the
initial state: rð0Þ ¼ 0:6; _rð0Þ ¼ 0:3; yð0Þ ¼ 3; _yð0Þ ¼ 1.
Table 3 shows the number of pole-balance trials (which

reflects the number of training episodes required) mea-
sured. The GENITOR [28] and symbiotic adaptive neuro-
evolution (SANE) [25] were applied to the same control
problem, and the simulation results are listed in Table 3. In
GENITOR, the normal evolution algorithm was used to
evolve the weights in a fully connected two-layer neural
network, with additional connections from each input unit
to the output layer. The network has five input units, five

ARTICLE IN PRESS

10
9
8
7
6
5
4

3
2
1
0

T
im

e
S

te
p

un
til

 F
ai

lu
re

× 104

10
9
8
7
6
5
4
3
2
1
0

T
im

e
S

te
p

un
til

 F
ai

lu
re

× 104

10
9
8
7
6
5
4
3
2
1
0

T
im

e
S

te
p

un
til

 F
ai

lu
re

× 104

0 20 40 60 80 100 120 140 160 180
Generations

0 20 40 60 80 100 120 140 160 180 200
Generations

Generations

S3
S5 S1

S4 S2

S3S5 S1 S4S2

S3S5

S1

S4
S2

0 50 100 150 200 250 300 350 400 450

(a)

(b)

(c)

Fig. 10. The performance of (a) the R-SSGA method, (b) the SEFC

method [16], and (c) the TGFC method [22] on the cart–pole balancing

system starting at five different initial states.

Table 3

Performance comparison of various existing models in Example 1

Method Mean Best Worst

GENITOR [28] 2578 415 12 964

SANE [25] 1691 46 4461

TGFC [22] 80 26 200

SEFC [16] 149 10 350

R-SSGA 17 5 29

C.-J. Lin, Y.-J. Xu / Neurocomputing 69 (2006) 2078–2089 2085
hidden units and one output unit. In SANE, the traditional
symbiotic evolution algorithm was used to evolve a two-
layer neural network with five input units, eight hidden
units, and two output units. An individual in SANE
represents a hidden unit with five specified connections to
the input and output units. In Table 3 we can see that the
proposed method is feasible and effective. And the
proposed R-SSGA method only took four rules and the
population size was 4.

In this example, to verify the performance of our
proposed method, we use five different initial states for
the R-SSGA, the SEFC, and the TGFC methods. The five
different initial states are shown as follows:

S1 : rð0Þ ¼ 0:8; _rð0Þ ¼ 0:2; yð0Þ ¼ 8; _yð0Þ ¼ 3,

S2 : rð0Þ ¼ 0:3; _rð0Þ ¼ 0:1; yð0Þ ¼ 2; _yð0Þ ¼ 0,

S3 : rð0Þ ¼ 0:5; _rð0Þ ¼ 0:1; yð0Þ ¼ 4; _yð0Þ ¼ 2,

S4 : rð0Þ ¼ 0:7; _rð0Þ ¼ 0:4; yð0Þ ¼ 6; _yð0Þ ¼ 3,

S5 : rð0Þ ¼ 0:2; _rð0Þ ¼ 0:1; yð0Þ ¼ 2; _yð0Þ ¼ 1.

Fig. 10(a)–(c) show that the R-SSGA, the SEFC, and the
TGFC methods learned on average to balance the pole at
the 78th, 105th, and 166th generation. Fig. 11(a)–(c) show the
angular deviation of the pole when the cart–pole balancing
system was controlled by the R-SSGA method, the SEFC
method [16], and the TGFC method [22] that starting at the
initial state: rð0Þ ¼ 0; _rð0Þ ¼ 0; yð0Þ ¼ 0; _yð0Þ ¼ 0. The aver-
age angular deviations were 0:01�, 0:04�, and 0:08�. Table 4
shows the number of pole-balance trials measured of the
R-SSGA, the SEFC [16], and the TGFC [22] methods. In
Table 4, we see that the proposed method obtains a better
performance than some existing methods [16,22].

4.2. Example 2. Water bath temperature control system

The goal of this simulation was to control the
temperature of a water bath system given by

dyðtÞ

dt
¼

uðtÞ

C
þ

Y 0 � yðtÞ

RC
, (17)

where yðtÞ is the system output temperature in �C; uðtÞ is
the heat flowing into the system; Y 0 is the room
temperature; C is the equivalent system thermal capacity;
and R is the equivalent thermal resistance between the
system borders and the surroundings.
Assuming that R and C are essentially constant, we

rewrite the system in Eq. (17) into discrete-time form with
some reasonable approximation. The system

yðtþ 1Þ ¼ e�aTsyðkÞ þ
ðb=aÞð1� e�aTsÞ

1þ e0:5yðkÞ�40
uðkÞ þ ½1� e�aTs�y0

(18)

is obtained, where a and b are constant values describing R

and C. The system parameters used in this example were
a ¼ 1:0015e�1, b ¼ 8:67973e�3, and Y 0 ¼ 25:0ð�CÞ, which
were obtained from a real water bath plant in [27]. The
input uðkÞ was limited to 0, and the voltage was 5V. The
sampling period was Ts ¼ 30. The system configuration is
shown in Fig. 12, where yref was the desired temperature of
the controlled plant.
In this example, yref and yðkÞ and the output uðkÞ were

normalized between 0 and 1 over the following ranges:
yref : ½25; 85�, yðkÞ : ½25; 85�, and uðkÞ : ½0; 5�. The values of
floating-point numbers were initially assigned using the
R-SSGA method initially. The fitness function was set for
each reassigned regulation temperature T ¼ 35, 55, and 75,

ARTICLE IN PRESS

Table 4

Performance comparison of existing models in Example 1

Method Mean Best Worst

TGFC [22] 166 57 407

SEFC [16] 105 47 189

R-SSGA 78 24 165

y(k+1)

SSGA method

Water

Bath System

Z-1

TFC

Controller

u(k)

y(k)

yref (k+1)

Reinforcement

Signal

Fig. 12. Flow diagram of using the R-SSGA method for solving the

temperature control problem.

0.01
0.008
0.006
0.004
0.002

-0.002
-0.004
-0.006
-0.008

-0.01

0

D
eg

re
e

D
eg

re
e

0 20 40 60 80 100 120 140 160 180 200
Time (Sec)

0 20 40 60 80 100 120 140 160 180 200
Time (Sec)

0 20 40 60 80 100 120 140 160 180 200

Time (Sec)

0.1
0.08
0.06
0.04
0.02

-0.02
-0.04
-0.06
-0.08

-0.1

0

D
eg

re
e

0.1
0.08
0.06
0.04
0.02

-0.02
-0.04
-0.06
-0.08

-0.1

0

(a)

(b)

(c)

Fig. 11. Angular deviation of the pole by a trained (a) the R-SSGA

method, (b) the SEFC method [16], and (c) the TGFC method [22].

120

110

100

90

80

70

60

120

100

80

60

40

20

0

k
k

120

100

80

60

40

20

0

k

0 10 20 30 40 50 60
Generations

Generations

Generations

0 10 20 30 40 50 60 70

0 20 40 60 80 100 120 140 160 180 200

(a)

(b)

(c)

Fig. 13. The performance of the water bath system for (a) the R-SSGA

method, (b) the SEFC method [16] and, (c) the TGFC method [22].

C.-J. Lin, Y.-J. Xu / Neurocomputing 69 (2006) 2078–20892086
starting from the current temperature and again after 10
time steps. The control temperature error should be within
�1:5 �C; otherwise failure occurs. In the R-SSGA method,
we set five rules constitute a TSK-Type fuzzy controller
using the proposed R-SSGA method. A total of five runs
were performed. Each run started at same initial state.
The simulation result in Fig. 13(a) shows that the

R-SSGA method learned on average to success at the 25th
generation. In this figure, each run indicates that the largest
fitness value in the current generation was selected before
the water bath temperature system failed. When the
R-SSGA learning is stopped, we chose the best string in
the population in the final generation and tested it with two
different examples in the water bath temperature control
system. The final fuzzy rules of a TSK-Type fuzzy
controller by the R-SSGA method are described as follows:

Rule 1: IF x1 is A11ð1:23; 0:75Þ and x2 is A21ð0:13; 0:81Þ
THEN y0 ¼ 7:09þ 8:50x1 þ 1:51x2.
Rule 2: IF x1 is A12ð0:18; 0:352Þ and x2 is A22ð1:09; 0:45Þ
THEN y0 ¼ �19:41� 14:051x1 � 16:81x2.
Rule 3: IF x1 is A13ð0:19; 0:36Þ and x2 is A23ð1:10; 0:46Þ
THEN y0 ¼ �19:42� 14:05x1 � 16:80x2.
Rule 4: IF x1 is A14ð0:0001; 1:27Þ and x2 is A24ð1:09; 0:45Þ
THEN y0 ¼ 5:40þ 8:47x1 � 16:81x2.
Rule 5: IF x1 is A15ð5:0; 0:66Þ and x2 is A25ð0:14; 0:08Þ
THEN y0 ¼ �4:85� 5:88x1 þ 9:45x2.

where Aijðmij ; sijÞ represents a Gaussian membership
function with mean mij and deviation sij in ith input
dimension and jth rule. In this example, as with Example 1,

ARTICLE IN PRESS

100
90

80
70
60
50
40
30
20
10
0

T
em

pe
ra

tu
re

 (
D

eg
re

e
C

)
E

rr
or

 (
D

eg
re

e
C

)

5V

Reference Signal
Actual Signal
Control Input

0 20 40 60 80 100 120
k

0 20 40 60 80 100 120

k

2.5

2

1.5

0.5

0

-0.5

-1.5

-1

1

R-SSGA
SEFC
TGFC

(a)

(b)

Fig. 15. (a) The tracking of the R-SSGA method when a change occurs in

the water bath system. (b) The error curves of the R-SSGA method, the

SEFC method [16], and the TGFC method [22].

Table 5

Performance comparison of various existing models in Example 2

SAE ¼
P120

k¼1jyref ðkÞ � yðkÞj R-SSGA SEFC [16] TGFC [22]

Regulation performance 360.04 370.12 400.12

Tracking performance 54.187 90.81 104.221

C.-J. Lin, Y.-J. Xu / Neurocomputing 69 (2006) 2078–2089 2087
we also compare the performance of our system with the
SEFC method [16] and the TGFC method [22]. Figs. 13(b)
and 10(c) show the performance of Juang et al. [16] and Lin
and Jo [22] methods. In this figure we can see that the
SEFC and TGFC methods learned on average to balance
the pole at the 49th and 96th generation but in our model
just take 25 generations.

For testing the controller system, we compare the three
methods (the R-SSGA, SEFC, and TGFC methods). The
three methods are applied to the water bath temperature
control system. The comparison performance measures
included a set points regulation and a change of
parameters.

The first task was to control the simulated system to
follow three set points

yref ðkÞ ¼

35 �C for kp40;

55 �C for 40okp80;

75 �C for 80okp120:

8><
>: (19)

The regulation performance of the R-SSGA method is
shown in Fig. 14(a). The error curves of the three methods
are shown in Fig. 14(b). In this figure, the R-SSGA method
obtains smaller errors than others.

In the second set of simulations, the tracking capability
of the R-SSGA method with respect to ramp-reference
signals is studied. We define

yref ðkÞ ¼

34 �C for kp30;

ð34þ 0:5ðk � 30ÞÞ �C for 30okp50;

ð44þ 0:8ðk � 50ÞÞ �C for 50okp70;

ð60þ 0:5ðk � 70ÞÞ �C for 70okp90;

70�C for 90okp120:

8>>>>>><
>>>>>>:

(20)
100
90
80
70
60
50
40
30
20
10
0

T
em

pe
ra

tu
re

 (
D

eg
re

e
C

)

0 20 40 60 80 100 120

5

4.5

3.5

4

3

2.5

2

1.5

0.5

0

1

E
rr

or
 (

D
eg

re
e

C
)

0 20 40 60 80 100 120

Reference Signal
Actual Signal
Control Input

R-SSGA
SEFC
TGFC

5V

(a)

(b)

k

k

Fig. 14. (a) Final regulation performance of the R-SSGA method for

water bath system. (b) The error curves of the R-SSGA method, the SEFC

method and the TGFC method.
The tracking performance of the R-SSGA method is shown
in Fig. 15(a). The corresponding errors of the three
methods are shown in Fig. 15(b). The results show the
good control and disturbance rejection capabilities of the
trained R-SSGA method in the water bath system.
To test their regulation performance, a performance

index, sum of absolute error (SAE), is defined by

SAE ¼
X

k

jyref ðkÞ � yðkÞj, (21)

where yref ðkÞ and yðkÞ are the reference output and the actual
output of the simulated system, respectively. Table 5 shows
the comparison the SAE among the R-SSGA method, the
SEFC method, and the TGFC method. As show in Table 5,
the proposed R-SSGA method has better performance than
that of the others. And the proposed method only takes 5
rules and the populations’ size is minimized to 4.

5. Conclusions

In this paper, a novel reinforcement sequential-search-
based genetic algorithm (R-SSGA) is proposed. The better
chromosomes will be initially generated while the better
mutation points will be determined for performing efficient
mutation. We formulate a number of time steps before

ARTICLE IN PRESS
C.-J. Lin, Y.-J. Xu / Neurocomputing 69 (2006) 2078–20892088
failure occurs as the fitness function. The proposed
R-SSGA method makes the design of TSK-type fuzzy
controllers more practical for real-world applications, since
it greatly lessens the quality and quantity requirements of
the teaching signals. Two typical examples were presented
to show the fundamental applications of the proposed R-
SSGA method. Simulation results have shown that (1) the
R-SSGA method converges quickly; (2) the R-SSGA
method requires a small number of population sizes (only
4); (3) the R-SSGA method obtains a smaller average
angular deviation than other methods.

Acknowledgment

This research is supported by the National Science
Council of ROC under Grant NSC 94-2213-E-324-004.

References

[1] C.W. Anderson, Learning and problem solving with multilayer

connectionist systems, Ph.D. dissertation, University of Massachu-

setts, Amherst, 1986.

[2] K.J. Astrom, B. Wittenmark, Adaptive Control, Addison-Wesley,

Reading, MA, 1989.

[3] A.G. Barto, M.I. Jordan, Gradient following without backpropagation

in layered networks, in: Proceedings of IEEE First Annual Conference

on Neural Networks, vol. 2, San Diego, CA, 1987, pp. 629–636.

[4] A.G. Barto, R.S. Sutton, Landmark learning: an illustration of

associative search, Biol. Cybern. 42 (1981) 1–8.

[5] A.G. Barto, R.S. Sutton, C.W. Anderson, Neuron like adaptive

elements that can solve difficult learning control problem, IEEE

Trans. Syst. Man Cybern. SMC-13 (5) (1983) 834–847.

[6] R.H. Cannon Jr., Dynamics of Physical Systems, Mc-Graw-Hill,

New York, 1967.

[7] K.C. Cheok, N.K. Loh, A ball-balancing demonstration of optimal

and disturbance-accommodating control, IEEE Control Syst. Mag.

(1987) 54–57.

[8] O. Cordon, F. Herrera, F. Hoffmann, L. Magdalena, Genetic fuzzy

systems evolutionary tuning and learning of fuzzy knowledge bases,

Advances in Fuzzy Systems-Applications and Theory, vol. 19, World

Scientific Publishing, NJ, 2001.

[9] M.J. Er, C. Deng, Online tuning of fuzzy inference systems using

dynamic Q-Learning, IEEE Trans. Syst. Man Cybern. B 34 (3) (2004)

1478–1489.

[10] O. Grigore, Reinforcement learning neural network used in control of

nonlinear systems, in: Proceedings of the IEEE International

Conference on Industrial Technology, vol 1, January 2000, pp. 19–22.

[11] J. Hauser, S. Sastry, P. Kokotovic, Nonolinear control via

approximate input–output linearization: the ball and beam example,

IEEE Trans. Autom. Control 37 (1992) 392–398.

[12] A. Homaifar, E. McCormick, Simultaneous design of membership

functions and rule sets for fuzzy controllers using genetic algorithms,

IEEE Trans. Fuzzy Syst. 3 (9) (1995) 129–139.

[13] J.-S.R. Jang, C.T. Sun, E. Mizutani, Neuro-Fuzzy and Soft

Computing, Prentice-Hall, Englewood Cliffs, NJ, 1997 (Chapter 17).

[14] C.F. Juang, A TSK-type recurrent fuzzy network for dynamic

systems processing by neural network and genetic algorithms, IEEE

Trans. Fuzzy Syst. 10 (2) (2002) 155–170.

[15] C.F. Juang, C.T. Lin, An online self-constructing neural fuzzy

inference network and its applications, IEEE Trans. Fuzzy Syst. 6 (1)

(1998) 12–32.

[16] C.F. Juang, J.Y. Lin, C.T. Lin, Genetic reinforcement learning

through symbiotic evolution for fuzzy controller design, IEEE Trans.

Syst. Man Cybern. B 30 (2) (2000) 290–302.
[17] C.L. Karr, E.J. Gentry, Fuzzy control of ph using genetic algorithms,

IEEE Trans. Fuzzy Syst. 1 (1993) 46–53.

[18] M. Kaya, R. Alhajj, Fuzzy OLAP association rules mining-based

modular reinforcement learning approach for multiagent systems,

IEEE Trans. Syst. Man Cybern. B 35 (2) (2005) 326–338.

[19] C.J. Lin, A GA-based neural fuzzy system for temperature control,

Fuzzy Sets and Systems 143 (2004) 311–333.

[20] C.J. Lin, A GA-based neural network with supervised and reinforce-

ment learning, J. Chin. Inst. Electr. Eng. 9(1) (2002) 11–24.

[21] C.J. Lin, C.H. Chen, Nonlinear system control using compensatory

neuro-fuzzy networks, IEICE Trans. Fund. E86-A (9) (2003)

2309–2316.

[22] C.T. Lin, C.P. Jo, GA-based fuzzy reinforcement learning for control

of a magnetic bearing system, IEEE Trans. Syst. Man Cybern. B 30

(2) (2000) 276–289.

[23] C.T. Lin, C.S.G. Lee, Reinforcement structure/parameter learning

for neural-network-based fuzzy logic control systems, IEEE Trans.

Fuzzy Syst. 2 (1994) 46–63.

[24] C.T. Lin, C.S.G. Lee, Neural Fuzzy Systems: A Neural-Fuzzy

Synergism to Intelligent Systems, Prentice-Hall, Englewood Cliffs,

NJ, 1996 (with disk).

[25] D.E. Moriarty, R. Miikkulainen, Efficient reinforcement learning

through symbiotic evolution, Mach. Learn. 22 (1996) 11–32.

[26] T. Takagi, M. Sugeno, Fuzzy identification of systems and its

applications to modeling and control, IEEE Trans. Syst. Man

Cybern. 1 (1) (1985) 116–132.

[27] J. Tanomaru, S. Omatu, Process control by on-line trained neural

controllers, IEEE Trans. Ind. Electron. 39 (1992) 511–521.

[28] D. Whitley, S. Dominic, R. Das, C.W. Anderson, Genetic reinforce-

ment learning for neuro control problems, Mach. Learn. 13 (1993)

259–284.

[29] X. Xu, H.G. He, Residual-gradient-based neural reinforcement

learning for the optimal control of an acrobat, in: Proceedings of

the IEEE International Conference on Intelligent Control, October

2002, pp. 27–30.

[30] X.W. Yan, Z.D. Deng, Z.Q. Sun, Competitive Takagi–Sugeno

fuzzy reinforcement learning, in: Proceedings of the IEEE Interna-

tional Conference on Control Applications, September 2001,

pp. 878–883.
Cheng-Jian Lin received the B.S. degree in

electrical engineering from Ta-Tung University,

Taiwan, ROC, in 1986 and the M.S. and Ph.D.

degrees in electrical and control engineering from

the National Chiao-Tung University, Taiwan,

ROC, in 1991 and 1996. From April 1996 to July

1999, he was an Associate Professor in the

Department of Electronic Engineering, Nan-Kai

College, Nantou, Taiwan, ROC. Since August

1999, he has been with the Department of
Computer Science and Information Engineering,

Chaoyang University of Technology. Currently, he is a Professor of

Computer Science and Information Engineering Department, Chaoyang

University of Technology, Taichung, Taiwan, ROC. He served as the

chairman of Computer Science and Information Engineering Department

from 2001 to 2005. His current research interests are neural networks,

fuzzy systems, pattern recognition, intelligence control, bioinformatics,

and FPGA design. He has published more than 60 papers in the

referred journals and conference proceedings. Dr. Lin is a member of the

Phi Tau Phi. He is also a member of the Chinese Fuzzy Systems

Association (CFSA), the Chinese Automation Association, the Taiwanese

Association for Artificial Intelligence (TAAI), the IEICE (The Institute of

Electronics, Information and Communication Engineers), and the IEEE

Computational Intelligence Society. He is an executive committee member

of the Taiwanese Association for Artificial Intelligence (TAAI).

Dr. Lin currently serves as the Associate Editor of International

Journal of Applied Science and Engineering.

ARTICLE IN PRESS
C.-J. Lin, Y.-J. Xu / Neurocomputing 69 (2006) 2078–2089 2089
Yong-Ji Xu received the B.S. degree in informa-

tion management from Ming-Hsin University of

Science and Technology, Taiwan, ROC, in 2002

and the M.S. degree at \the Department of

Computer Science and Information Engineering,
Chaoyang University of Technology, Taiwan, ROC, in 2005. He is

currently pursuing Ph.D. degrees in electrical and control engineering

from the National Chiao-Tung University, Taiwan, ROC. His research

interests include neural networks, fuzzy systems, and genetic algorithms.

	A novel genetic reinforcement learning for nonlinear fuzzy �control problems
	Introduction
	The sequential-search-based genetic algorithm
	Reinforcement sequential-search-based genetic algorithm (R-SSGA)
	Illustrative examples
	Example 1. Cart-pole balancing system
	Example 2. Water bath temperature control system

	Conclusions
	Acknowledgment
	References

